Friday, May 11, 2012

Singular Matrix

A square matrix that does not have a matrix inverse. A matrix is singular iff its determinant is 0. For example, there are 10 singular 2×2 (0,1)-matrices:
 [0 0; 0 0],[0 0; 0 1],[0 0; 1 0],[0 0; 1 1],[0 1; 0 0]
[0 1; 0 1],[1 0; 0 0],[1 0; 1 0],[1 1; 0 0],[1 1; 1 1].
The following table gives the numbers of singular n×n matrices for certain matrix classes.
matrix typeSloanecounts for n=1, 2, ...
(-1,0,1)-matricesA0579811, 33, 7875, 15099201, ...
(-1,1)-matricesA0579820, 8, 320, 43264, ...
(0,1)-matricesA0467471, 10, 338, 42976, ...

No comments:

Post a Comment

Blog Archive