The maximum number of linearly independent rows in a matrix
A is called the
row rank of
A, and the maximum number of linarly independent columns in
A is called the
column rank of
A. If
A is an
m by
n matrix, that is, if
A has
m rows and
n columns, then it is obvious that
What is not so obvious, however, is that for any matrix
A,
-
the row rank of
A = the column rank of
A
Because of this fact, there is no reason to distinguish between row rank and column rank; the common value is simply called the
rank of the matrix. Therefore, if
A is
m x n, it follows from the inequalities in (*) that
where min(
m, n) denotes the smaller of the two numbers
m and
n (or their common value if
m =
n). For example, the rank of a 3 x 5 matrix can be no more
than 3, and the rank of a 4 x 2 matrix can be no more than 2. A 3 x 5
matrix,
can be thought of as composed of three 5-vectors (the rows) or
five 3-vectors (the columns). Although three 5-vectors could be linearly
independent, it is not possible to have five 3-vectors that are
independent. Any collection of more than three 3-vectors is
automatically dependent. Thus, the column rank—and therefore the rank—of
such a matrix can be no greater than 3. So, if
A is a 3 x 5 matrix, this argument shows that
in accord with (**).
The process by which the rank of a matrix is determined can be illustrated by the following example. Suppose
A is the 4 x 4 matrix
The four row vectors,
are not independent, since, for example
The fact that the vectors
r3 and
r4 can be written as linear combinations of the other two (
r1 and
r2, which are independent) means that
the maximum number of independent rows is 2. Thus, the row rank—and
therefore the rank—of this matrix is 2.
The equations in (***) can be rewritten as follows:
The first equation here implies that if −2 times that first row is
added to the third and then the second row is added to the (new) third
row, the third row will be become
0, a row of zeros. The second equation above says
that similar operations performed on the fourth row can produce a row of
zeros there also. If after these operations are completed, −3 times the
first row is then added to the second row (to clear out all entires
below the entry
a11 = 1 in the first column), these elementary row operations reduce the original matrix
A to the echelon form
The fact that there are exactly 2 nonzero rows in the reduced form
of the matrix indicates that the maximum number of linearly independent
rows is 2; hence, rank
A = 2, in agreement with the conclusion above. In general, then,
to compute the rank of a matrix, perform elementary row
operations until the matrix is left in echelon form; the number of
nonzero rows remaining in the reduced matrix is the rank. [Note: Since column rank = row rank, only two of the four
columns in
A—
c1,
c2,
c3, and
c4—are linearly independent. Show that this is indeed the case by verifying the relations
(and checking that
c1 and
c3 are independent). The reduced form of
A makes these relations especially easy to see.]
Example 1: Find the rank of the matrix
First, because the matrix is 4 x 3, its rank can be no greater than
3. Therefore, at least one of the four rows will become a row of zeros.
Perform the following row operations:
Since there are 3 nonzero rows remaining in this echelon form of
B,
Example 2: Determine the rank of the 4 by 4 checkerboard matrix
Since
r2 =
r4 =
−r1 and
r3 =
r1, all rows but the first vanish upon row-reduction:
Since only 1 nonzero row remains, rank
C = 1.
No comments:
Post a Comment